
Collision Avoidance for An Ackermann-Steering Vehicle via
Map-Based Deep Reinforcement Learning (2021)

Guoliang You, Yujie Yang, Tingting Jiang, Xu Li, Xingchen Li

Abstract— Deep reinforcement learning (DRL) approaches
have been applied for robot navigation with promising results.
However, it is still challenging to develop a DRL-based collision
avoidance method for an Ackermann-steering vehicle among
unknowingly moving obstacles, as the trained network not
only needs to generate collision-free trajectories that satisfy
Ackermann kinematic constraints, but also be able to handle
multiple moving obstacles in various environments. In this
paper, we propose a map-based DRL approach for collision
avoidance of an Ackermann-steering vehicle that can handle
multiple moving obstacles. In specific, we introduce a convo-
lutional neural network that maps the vehicle’s observation
to a kinematically-feasible trajectory and train the network in
simulation environments with moving obstacles that are driving
by a modified version of the network. We introduce a specified
reward shaping strategy and a multi-stage parallel curriculum
learning strategy to accelerate and stabilize the training process.
Then we deploy the trained model to an actual vehicle to
perform collision avoidance in the real world. We evaluate the
approach with multiple scenarios both in the simulation and the
real world. Both qualitative and quantitative experiments show
that the approach allows the vehicle to avoid various moving
obstacles with a high success rate.

I. INTRODUCTION

Collision avoidance for Ackermann-steering vehicles [1] is
to efficiently find a collision-free and kinematically-feasible
path to the target in various environments with both static and
moving obstacles, which is one of the major challenges for
multiple autonomous applications, like self-driving cars [2]
and delivering vehicles [3].

Although numerous collision avoidance methods have
been proposed, they suffer from several common limitations
in practice [4]. For instance, assumptions of the method may
not hold in every environment [5], intensive computational
demands are imposed by some methods [6], difficult and
time-consuming manual parameter tuning is required to
deploy the method [7], and it is difficult for the method to
learn from past experiences [8].

Moreover, multi-robot collision avoidance for robots with
different shapes and different kinematic constraints in a
distributed and communication-free scenario is a much more
challenging task. Existing approaches, like optimal recipro-
cal collision avoidance (ORCA) [9] and bicycle reciprocal
collision avoidance (B-ORCA) [10], provide a sufficient
condition for robots to avoid collisions with each other.
However, they require the robots to share the same kinematic
constraints. Generalized reciprocal collision avoidance [11]
extends the approach to robots with different kinematic
constraints, like differential-drive and Ackermann-steering.

Fig. 1. The Ackermann-steering vehicle.

However, it requires all the robots to move following the
same strategy.

To overcome these limitations, deep reinforcement learn-
ing (DRL) approaches have been applied for collision avoid-
ance with promising results [12]. However, few of them
considered multi-robot collision avoidance for robots with
different kinematic constraints, which limits their applica-
tions, like navigating an Ackermann-steering vehicle through
pedestrians or differential-drive robots in a communication-
free scenario.

According to the difference between the networks’ inputs,
existing DRL methods can be roughly divided into three
categories: agent-based, sensor-based, and map-based. In
particular, an agent-based method [13] takes into account
positions and movement data, like velocities or accelerations,
of other robots and obstacles, which assumes the perfect
sensing of the surroundings and is hard to be implemented
in the real world. A sensor-based method uses the sensor
data, like laser scan data [14], as the inputs of the network,
which only works for a certain type of sensors. A map-
based method considers an intermediate representation of the
surrounding environment, like local grid maps [12], [15],
which can be easily generated from multiple sensor data
or sensor fusion results. Compared to other methods, the
map-based approach is more robust to noisy sensor data,
does not require robots’ movement data, easy to be trained
in a simulator, and considers sizes and shapes of related
robots, which make it more effective, robust, and easier to
be deployed to real robots.

In this paper, inspired by B-ORCA, we propose a
map-based DRL approach for collision avoidance of an
Ackermann-steering vehicle, which also supports the vehicle
to navigate through pedestrians or differential-drive robots in
a communication-free scenario. We use the egocentric local



grid map of the vehicle to represent its immediate environ-
mental information, which specifies its shape and observable
appearances of static and moving obstacles. Then we apply
the distributed proximal policy optimization (DPPO) algo-
rithm to train a convolutional neural network that directly
maps three frames of egocentric local grid maps and the
position of the vehicle’s local target into a drivable trajectory.
In specific, the network outputs both the curvature of the
trajectory and the expected acceleration of the vehicle, which
would be further processed by the trajectory tracking system
of the vehicle to obtain the corresponding control commands
of the specified vehicle. Notice that, it is more robust for an
Ackermann-steering vehicle to track trajectories by its fine-
tuned trajectory tracking system, than directly execute low-
level commands learned from the simulator.

In the first stage, We train the neural network in simulation
environments with only static obstacles. In the second state,
we continue to train the network in environments with other
vehicles and multiple differential-drive mobile robots, which
are navigated by the modified version of the network by
converting the outputs to robot’s control commands, i.e.,
linear velocities and angular velocities. Notice that, the
network learns how to interact with these differential-drive
mobile robots in these environments. As discussed in [12],
the network trained in these environments allows the robot to
navigate through pedestrians. At last, we deploy the trained
model to an actual vehicle to perform collision avoidance in
its navigation without tedious parameter tuning.

Note that, it is not easy to learn a robust collision avoid-
ance policy for various moving obstacles from simulation
environments. If these moving obstacles are navigated by
a specified strategy, then the learned policy might be vul-
nerable to obstacles that behave differently. However, we
show that by training the policy network in environments
with other vehicles and differential-drive robots, where all
vehicles and robots are driven by the network and its modi-
fication respectively, the performance of collision avoidance
for the vehicle to navigate through multiple moving obstacles
can be greatly improved.

We also introduce two strategies to accelerate and stabilize
the training process. First, we apply the reward shaping
technique [16] by adding stepped penalties for obstacles in
the warning or danger zone of the vehicle. Then we use
a multi-stage parallel curriculum learning strategy [17] to
speed up and optimize the training.

We evaluate the approach with multiple scenarios both
in simulation and the real world. Experimental results show
that the approach is effective with a high success rate. We
also conduct ablation studies to show the positive effects of
applying our improvements. The demonstration video can
be found at https://youtu.be/kkEVVgvzsDE. Our
main contributions are summarized as follows:
• We propose a map-based DRL approach for collision

avoidance of Ackermann-steering vehicles, which maps
local grid maps of the vehicle into a drivable trajectory.
The experimental results show that the approach is
effective and easy to be deployed with a high success
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Fig. 2. (a) A simulation environment, where the blue digital circles
represent the target positions of corresponding vehicles or robots, black
blocks in magenta blocks denote vehicles, and black spots denote robots.
(b) The egocentric local grid map for the vehicle 0. (c) The egocentric local
grid map for the robot 1.

rate.
• We introduce a specified reward shaping strategy and a

multi-stage parallel curriculum learning strategy to ac-
celerate and stabilize the training process. The ablation
studies explore the positive effects of both strategies.

• We train the collision avoidance policy in simulation
environments with other vehicles and differential-drive
robots. Both vehicles and robots are navigated by the
same policy network and its modification, respectively.
The experimental results show that such training en-
vironments can greatly improve the performance of
collision avoidance for the vehicle to handle multiple
moving obstacles.

II. APPROACH

We first provide a formulation of the collision avoidance
problem. Then we introduce the DPPO algorithm with our
improvements. At last, we specify details on deploying the
trained model to an actual vehicle.

A. Problem Formulation

We specify the collision avoidance problem as a Par-
tially Observable Markov Decision Process (POMDP) prob-
lem [18], i.e., the tuple 〈S,A,P,R,Ω,O〉.

In specific, an observation o ∈ Ω received by the vehicle
(resp. robot) consists of the triple (M,g,α), where M denotes
its egocentric local grid map, g denotes the position of its
target, and α denotes its heading angle. Note that, M can
be easily generated from its local costmap1. Fig. 2 shows
corresponding egocentric local grid maps for a vehicle and
a robot in a simulation environment.

We specify different action spaces for Ackermann-steering
vehicles and differential-drive robots. An action a ∈ A for
a vehicle is a pair (c,σ), where c denotes the curvature
of a trajectory and σ denotes the expected acceleration for
vehicle. Note that, (c,σ) specifies a trajectory that should be
followed by the vehicle, which would be further processed
by the trajectory tracking system of the vehicle to obtain the
corresponding control commands. In our implementation, we
set c ∈ [−1.43, 1.43] (m−1) and σ ∈ [−11.25, 11.25] (m/s2).
On the other hand, an action for a robot is pair (v,ω),
where v and ω denote expected line and angular velocities
of the robot respectively, which can be executed by the robot

1http://wiki.ros.org/costmap_2d.

https://youtu.be/kkEVVgvzsDE
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Fig. 3. The architecture of the policy network.
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Fig. 4. (a) A vehicle in the simulation environment. (b) The danger zone
of the vehicle. (c) The warning zone of the vehicle. (d) The combination
of both zones.

directly. In our implementation, we set v∈ [0, 0.6] (m/s) and
ω ∈ [−0.9, 0.9] (s−1).

B. Distributed Proximal Policy Optimization

1) Reward Shaping: We first introduce the reward func-
tion for a robot, then we apply reward shaping for a vehicle
by adding stepped penalties w.r.t its warning and danger
zones. In specific, the reward function for a differential-drive
robot is defined as follows:

rr = rg + rc + rs,

rg =

{
rarr if ‖pt −g‖< 0.6,
ε (‖pt−1−g‖−‖pt −g‖) otherwise,

rc =

{
rcol if collision,
0 otherwise,

where rarr > 0, pt denotes the position of the robot at the
current time step t, ε is a hyper-parameter, and rg denotes the
reward for arriving the target and the penalty for departing
the target. rcol < 0 and rc denotes the penalty for the collision.
As last, we apply a small negative penalty for each time step,
i.e., rs < 0, to encourage short paths.

As illustrated in Fig. 4, we define a warning and a danger
zone of an Ackermann-steering vehicle for reward shaping.

Then the reward function for an Ackermann-steering ve-
hicle is defined as follows:

rv = rg + rc + rs + rw + rd ,

rw =

{
rwarn if obstacles in the warning zone,
0 otherwise,

rd =

{
rdanger if obstacles in the danger zone,
0 otherwise,

(a) Random scenario (b) Circular scenario

Fig. 5. (a) Random scenario: environments with randomly located obstacles
and multiple vehicles and robots. (b) Circular scenario: environments with
randomly placed vehicles and robots on a circle.

where rwarn, rdanger < 0, rw (resp. rw+rd) denotes the penalty
when there were obstacles in the warning (resp. danger) zone
of the vehicle.

In our implementation, we set rarr = 500, ε = 10, rcol =
−500, rs =−5, rwarn =−20, and rdanger =−10.

In this paper, we apply the Distributed Proximal Policy
Optimization (DPPO) algorithm [19] to train the stochastic
policy πθ (a | o) of collision avoidance for an Ackermann-
steering vehicle. DPPO is extended from PPO by collecting
experiences in a distributed setting from a variety of envi-
ronments where multiple vehicles and robots share the same
policy πθ while take different actions. We specify details
of the network architecture and the training process in the
following.

2) Network Architecture: The architecture of the convolu-
tional network for the collision avoidance policy πθ in DPPO
is shown in Fig. 3. The input of the network consists of
three frames of observations, i.e., egocentric local grid maps,
positions of targets, and heading angles. The network outputs
the mean of the action, which is sampled from a Gaussian
distribution. We use different clip functions to convert the
result to the corresponding action for the Ackermann-steering
vehicle or the differential-drive robot, respectively. Then
both vehicles and robots can share the same network during
the training, while converting the results to corresponding
actions.

3) Multi-Stage Parallel Curriculum Learning: The policy
network needs to be trained in simulation environments of
two scenarios illustrated in Fig. 5, where random scenario
helps the vehicle to be able to avoid obstacles and circular
scenario helps the vehicle to be able to interact with others.
However, as shown in experiments, it is hard to learn a policy



(a) Random scenario (b) Circular scenario

Fig. 6. Training scenarios with different difficulties.

by directly applying DPPO on these environments.
We introduce a multi-stage parallel curriculum learning

strategy to accelerate and stabilize the training process.
In specific, we first train the network on environments in
random scenario by parallelly training the network on a
series of scenarios with different difficulties as illustrated in
Fig. 6(a). Once the network has achieved a good performance
on these scenarios, we start the next stage and train the
network on environments in circular scenario by parallelly
training the network on a series of scenarios with different
difficulty levels as illustrated in Fig. 6(b).

C. Deployment on Vehicle

As shown in Fig. 1, the Ackermann-steering vehicle
has a 3D LiDAR sensor to generate point clouds2 of the
surrounding environment. Then the costmap converted from
the point clouds can construct the egocentric local grid
map. Meanwhile, the vehicle has a RTK-GNSS3 receiver
which provides the target position, the vehicle’s position and
heading angle.

Given an action (c,σ), the vehicle tracks the corre-
sponding trajectory with the pure pursuit method4, whose
parameters have been tuned for the specified vehicle. We
also implement a safety system for the real vehicle to stop
it if there were obstacles in its danger region.

Parameter Value
learning rate for policy network 1.0×10−3

learning rate for value function 3.0×10−4

training iterations for policy network 80
training iterations for value function 80
image size 48×48
episode length 5000

TABLE I
HYPER-PARAMETERS OF OUR TRAINING ALGORITHM.

III. EXPERIMENTS

In this section, we evaluate the approach with multi-
ple scenarios both in simulation and the real world. The
demonstration video can be found at https://youtu.
be/kkEVVgvzsDE.

2http://wiki.ros.org/pcl.
3http://wiki.ros.org/rtklib.
4http://wiki.ros.org/purepursuit_planner.

A. Reinforcement Learning Setup
We trained our collision avoidance policy for the

Ackermann-steering vehicle following the DPPO algorithm
with the hyper-parameters listed in Table I.

The training environments are constructed by a customized
simulator based on OpenCV5. Both the policy network
and the value network are implemented in Pytorch6 and
trained with the Adam optimizer. The training hardware is
a computer with an i7-10700 CPU and a single NVIDIA
GeForce RTX 3090 GPU. The entire training process takes
about 35 hours for the policy to achieve a good performance.

We use success rate, i.e., the ratio of the episodes that end
with the vehicle reaching its target without any collision,
and expected return, i.e., the average of the sum of rewards
of episodes, to evaluate the performance of the collision
avoidance policies for different approaches.

B. Simulation Experiments

(a) Dynamic 1 (b) Dynamic 2 (c) Dynamic 3

(d) Dynamic 4 (e) Dynamic 5 (f) Dynamic 6

Fig. 7. Testing scenarios with randomly placed vehicles and robots.

Scenario Success rate Scenario Success rate
Dynamic 1 95.9% Dynamic 4 82%
Dynamic 2 88.2% Dynamic 5 94.8%
Dynamic 3 89.1% Dynamic 6 90.4%
Random 93.3% Circular 91.3%

TABLE II
PERFORMANCE OF THE TRAINED MODEL FOR DYNAMIC SCENARIOS.

Notice that, we only use environments in the random
scenario and circular scenario for the training. Here we
evaluate the performance of the trained model on multiple
unseen scenarios as illustrated in Fig. 7. The experimental
results are summarized in Table II, which are calculated
from the averaging results of 500 randomly constructed
environments for corresponding scenarios. In particular, the
results for the random and circular scenario in Table II
are calculated on newly generated environments in both
scenarios. These results show that the trained policy performs
well in testing scenarios with a high success rate.

5https://opencv.org/.
6https://pytorch.org/.

https://youtu.be/kkEVVgvzsDE
https://youtu.be/kkEVVgvzsDE
http://wiki.ros.org/pcl
http://wiki.ros.org/rtklib
http://wiki.ros.org/purepursuit_planner
https://opencv.org/
https://pytorch.org/


(a) Shaping

(b) Non-shaping

Fig. 8. Static training scenarios for “Shaping” and “Non-shaping”.

(a) Test 1 (b) Test 2 (c) Test 3

Fig. 9. Static testing scenarios for “Shaping” and “Non-shaping”.

C. Ablation Studies

We conduct ablation studies here to evaluate the effects
of using our reward shaping and the multi-stage parallel
curriculum learning strategies.

Notice that, the experiments were performed for scenarios
with only static obstacles, as DPPO failed to converge for
dynamic scenarios if either of these strategies were not
adopted. Moreover, DPPO also failed to converge for these
static scenarios if none of these strategies were adopted. We
first consider the reward shaping strategy. We use “Shaping”
to denote the DPPO approach with our reward shaping and
“Non-shaping” to denote the approach without the reward
shaping. Note that, multi-stage parallel curriculum learning
is applied in both approaches. We construct scenarios with
randomly placed static obstacles for the training of both
approaches as shown in Fig. 8. We also construct static
scenarios for the testing as shown in Fig. 9.

The experimental results are summarized in Table III,
which are calculated from the averaging results of 200
randomly constructed environments for corresponding sce-

Scenario Method Success rate Expected return
Test 1 Non-shaping 78% 74.3

Shaping 100% 276
Test 2 Non-shaping 82% 44.7

Shaping 88.5% 133
Test 3 Non-shaping 78.5% 63.6

Shaping 87% 131

TABLE III
PERFORMANCE OF “NON-SHAPING” AND “SHAPING”.

(a) Corridor 1 (b) Corridor 2

Fig. 10. Training scenarios for “Curr” and “Non-curr”.

Scenario Method Success rate Expected return
Corridor 1 Non-curr 0% −732

Curr 99% 118
Corridor 2 Non-curr 0% −524

Curr 80% 1.03

TABLE IV
PERFORMANCE OF “NON-CURR” AND “CURR”.

narios. These results show that the reward shaping strategy
is important for the performance.

Now we consider the multi-stage parallel curriculum learn-
ing strategy. We use “Curr” to denote the DPPO approach
with multi-stage parallel curriculum learning and “Non-curr”
to denote the one without. Note that, the reward shaping is
also applied in both approaches. Similarly, we construct two
scenarios for the training of both approaches as shown in
Fig. 10. “Non-curr” has already failed to converge for these
training scenarios. The experimental results are summarized
in Table IV, which are calculated from the averaging results
of 100 tests for corresponding scenarios. These results show
that multi-stage parallel curriculum learning is crucial for the
performance.

D. Real-World Experiments

In this section, we deploy the trained collision avoidance
policy to an Ackermann-steering vehicle, as shown in Fig. 1,
in the real world. In specific, the vehicle has a 16 laser-beam
LiDAR, a RTK-GNSS receiver, an IPC with an i7-8700 CPU
and a NVIDIA 2080Ti GPU. The LiDAR is used to generate
the egocentric local grid map with the size 6× 6 (m2) and
the resolution 0.1 (m2) for the size of a cell.

We introduce a series of real-world tests for the vehi-
cle to evaluate the performance of our map-based DPPO
approach. We place paper boxes as static obstacles and
consider walking pedestrians as moving obstacles in the
environment. Fig. 11 illustrates the performance of the
vehicle in scenarios with static and moving obstacles.The
experimental result shows that the trained model can be
easily deployed to an Ackermann-steering vehicle to perform
collision avoidance in environments with static and moving
obstacles. The demonstration video can be found at https:
//youtu.be/kkEVVgvzsDE.

IV. CONCLUSIONS

In this paper, we argue that navigating through multi-
ple moving obstacles with different kinematic constraints

https://youtu.be/kkEVVgvzsDE
https://youtu.be/kkEVVgvzsDE


(a) Static scenario 1 (b) Static scenario 2

(c) Dynamic scenario 1 (d) Dynamic scenario 2

Fig. 11. Experiments in the real world.

need to be handled by collision avoidance approaches for
Ackermann-steering vehicles. To address this challenge, we
propose a DPPO based collision avoidance approach for
an Ackermann-steering vehicle that allows the vehicle to
navigate through pedestrians or differential-drive robots in
a communication-free scenario. We use the egocentric local
grid map of the vehicle to represent the environmental
information around it including its shape and observable
appearances of obstacles, robots, and other vehicles, which
can be easily generated by using multiple sensors or sensor
fusion. Then we apply DPPO to train a convolutional neural
network that directly maps three frames of egocentric local
grid maps and the positions of the vehicle’s targets into a
collision-free and drivable trajectory, which would be tracked
by the vehicle. We apply multi-stage parallel curriculum
learning to train networks using simulation environments in
the random scenario and circular scenario, where a specified
reward shaping is used to accelerate and stabilize the training
process. At last, we deploy the trained model to an actual
vehicle to perform collision avoidance in its navigation
without tedious parameter tuning.

We evaluate the approach with multiple scenarios both
in simulation and the real world. Experimental results show
that the approach performs well to unseen scenarios with a
high success rate. We also conduct ablation studies showing
the positive effects of applying our improvements. These
experiments show that our approach is effective, easy to be
deployed to an Ackermann-steering vehicle, and performs
well in the real world.

For future work, we plan to deploy the train model to
multiple Ackermann-steering vehicles and differential-drive
mobile robots of different shapes in the real world. We will
further investigate DRL-based approaches for heterogeneous
multi-robot collision avoidance.
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